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Abstract

The daily returns on leveraged and inverse-leveragechange-traded funds
(LETFs) are a multiple of the daily returns of derence index. Because LETFs
rebalance their leverage daily, their holding greturns can deviate substantially from
the returns of a leveraged investment. While abaiftof LETF investors hold their
investments for less than a month, the standarlyssaf these investments uses a
continuous time framework that is not appropriateanalyzing short holding periods,
so the true effect of this daily rebalancing hadoeen properly ascertained.

In this paper, we model tracking errors of LETFsnpared to a leveraged
investment in discrete time. For a period lastinganth or less, the continuous time
model predicts tracking errors to be small. Howewer find that in a discrete time
model, daily portfolio rebalancing introduces tiiagkerrors that are not captured in the
continuous time framework. On average, portfolicdbatancing accounts for
approximately 25% of the total tracking error, amaertain scenarios the rebalancing
tracking error could rise to as high as 5% in 3ksemd can dominate the total tracking
error. Since investors in LETFs have short averasj@ing periods and high average
turnover ratios, the effects of portfolio rebalagcmust be accurately accounted for in
the analysis of LETF returns.

1 Introduction

Exchange Traded Funds (ETFs) were introduced inJtBanarkets in 1993 and their number
has grown rapidly ever since. By the end of Jan@ad1 there were 943 ETFs with combined
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assets of more than $1 trillidnOriginally, ETFs tracked broad-market indexes sashthe
S&P 500 index. More recently, ETFs with more comgied exposures to underlying assets and
more complex investment strategies have been iss&ed example, the daily return on the
leveraged “Ultra S&P 500 ProShares” (SSO) is twiloe daily return of the S&P 500 Index.
Leveraged and Inverse ETFs (LETFs) were first issnethe United States in June 2006 by
the ProFunds Group; there are now more than 400FsBAith combined assets of more than
$120 billion?

Although LETFs are a relatively new type of ETFerd is an emerging literature
describing their properties. (Cheng & MadhavenQ9@0and (Avellaneda & Zhang, 2010)
establish the properties of LETFs in a continuotisie framework. They demonstrate the
potentially substantial deviation between the ulyiteg index return and the LETF return due to
the daily rebalancing of the LETF. Most notablyeyhdevelop the following relationship
between the return of an LETF and the return afimiderlying index for a long holding period:

A S x —x? 2

wherex is the leverage size of the LETE! andR; are the holding period returns of LETF and
the underlying index from tim@ to ¢, ando denotes the volatility of the underlying ind&&s
indicated by the equation, holding all else equlaé higher the volatility of the underlying
index, the lower the return of an LETF.

(Gued), et al.,, 2010) investigate these trackingorer between LETFs and their
underlying indices. They illustrate that an LETéuld potentially perform much worse than its
reference index, especially when realized volgtibthigh. The same point is also made in (Lu,
et al., 2009) which analyzes the long term behawioLETFs. (Avellaneda & Zhang, 2010)
study LETF models in continuous and discrete tiMbey conclude that in discrete time
settings, the return of LETFs are path-dependeiying on the realized variance in the holding
period. They also consider expense ratios andowumg costs associated with LETFs.

However, they assume the effects of daily rebatanoin the overall performance of an LETF

2 See Investment Company Institute (ICI) - http:/fmiei.org/research/stats/etf
% Data source (Bloomberg).

* This model and all models presented in this papsume constant volatility.



are small for short holding periods and therefog on long holding periods. All these papers
highlight how costly it can be for an investor twldvan LETF over a long holding period as the

LETF return will likely deviate substantially frothe return of a leveraged investment that does
not rebalance its portfolio daily.

When held for a short time, the figirence between the returns to LETFs and to
traditional leveraged investments is limited, whishwhy LETF issuers recommend using
LETFs for only short term trading strategfesiowever, the ffect of discretization errors
created by the daily rebalancing of LETF portfolissnot well understood. To achieve the
desired leveraged returns of the underlying indeb&TF manager must either borrow or short
the same portfolio as the index, typically on alydaasis. In this paper, we investigate the
properties and characteristics of investing in &TE over a short holding period. We model
and analyze the return and tracking error of LEiFFa discrete time framework, allowing for a
more complete analysis of short holding periods.

First, as a benchmark case, we follow the litemt@nd perform an analysis in
continuous time, modeling an LETF’s returns andkireg errors. We calculate and compare the
expected return and volatility of an LETF to a fixadial-leverage investment such as one
purchased through a margin account. We analyzectheria necessary for an LETF to
outperform a fixed-initial-leverage investment oe #ame underlying index. For short holding
periods, the probability that fixed-initial-leveragerestments outperform LETFs is about 68%.
The 68% probability is invariant with changes ie tmderlying mean, volatility, leverage size,
and holding time. When a holding period is shtirg returns of LETFs track those of fixed-
initial-leverage investments closely, but they @gwisubstantially when held for a long period
of time.

Second, we develop a model of LETF returns in ardis time setting, i.e., with daily
rebalancing (in contrast to continuous time modelsch only rely on the sample mean of
returns). In the discrete time formulation, thednad) period returns of LETFs are a function
of the sample mean and sample variance of the deatilyns of the index. As a consequence,
there are additional tracking errors presentedhéndiscrete time setting related to magnitude of

the sample variance. When the length of the hglgieriod increases, the discrete time results

® See footnote 3



converge to the continuous time results as the Eamgriance converges to the expected
variance. Over short holding periods however, wbantinuous time models predict minimal
tracking error, the extent of tracking errors doedbalancing can be significant. We quantify
this additional tracking error and calculate itsgm&ude under different scenarios.

The discrete time model is more appropriate thanctimtinuous time model for LETFs
because LETFs only rebalance their leverage ondayaContinuous time models effectively
assume that rebalancing is performed continuod$lis may be a reasonable approximation
for long holding periods, but when the holding pdris short, the assumption of a continuous
rebalancing creates a discrepancy between the meuobdefturns and likely realized returns.
Using a discrete time setting, we model daily rabeing and obtain more accurate predictions
of the distribution of LETF returns for short haldi periods.

Based on our analysis of LETFs, we find that alrd0% of the existing funds have an
average holding period of less than a month. Weutatle the holding periods for each LETF
when tracking errors between discrete and contisueturns are large. The large discrepancies
occur when the realized volatility is substantiaghgater than the expected volatility. We explain
several other reasons that possibly explain trgeldiscrepancies, including the imperfectness

in leverage and stochastic volatilities over time.

2 Benchmark Case - Continuous Time Model

We start by developing a continuous time analy$it BTF returns and properties similar
to the one developed in (Cheng & Madhaven, 2009).tlén develop the discrete time model
and compare the results to the continuous time tadde short holding periods. In contrast to
(Cheng & Madhaven, 2009), we concentrate our arslgs the comparison of the LETF
properties with those of a fixed-initial-leveragedastment. A fixed-initial-leveraged investment
earns a fixed multiple of the holding period retwn an index and is achieved by borrowing

and investing in an ETF, so for simplicity we widifer to this strategy as an METF.

® As our focus is on holding periods measured irsdayt months and the cross-sectional variatioroldihg

period returns, we ignore borrowing costs.



2.1 Model

We perform the continuous time analysis on thrextsistic processes: the levels of the
underlying index £;), the LETF @,;) and the METF N,). W.ithout loss of generality, we
simply set the starting levels of all three proessso be the sanfg = A, = M,. In the
following analysis we explore evolutions among thésee processes.

Suppose the underlying index level follows a geoimérownian motion

as
St

whereu ando are the expected mean and volatility of the retWhen set in a risk-neutral
world, u = r — g wheregq is a dividend yield and is a risk-free rate (Hull, 2008). An LETF

with a leverager also follows a geometric Brownian motion as

dA as
—L = x—* = xudt + xadW, (3)
A St

This implies that the LETF leverages up the indsixnnx times and volatility x| times.

Since the margin account leverages up the holdangpg return of the index, at any time

t, the level of an METH, satisfies the following relation with the undengiindex:

Mt—(St 1) MR (x—1)
My \s, )T TS5

Applying Itd’s Lemma toM(S:, t) we obtain a stochastic partiafférential equation for

(4)

M;:
dM; = xuSidt + xoS:dZ; (5)
= u(My + (x — D)Mp)dt + o(M¢ + (x — 1)My)dZ,
Note that the equation has the teévipwhich implies that the value of an METF, unlikeand
A;, is dependent on the initial value at the startimget = 0.
Since boths, andA, follow a geometric Brownian motion, at any givemé t they are

log-normally distributed:

Se = S, exp ((u —a?/2)t + a\/fZ)

A = Ay exp ((xu —x%02%/2)t + xcr\/fZ) (6)



whereZ is a standard normal variable. For METFs, insteladotving the partial dferential
Equation (5), we use the mapping function (4) totge functional form forM, at any time.
We summarize the mean and standard deviation dfdhiing period return®; , R# andRM

in Table 17
Table 1: Summary of the Holding Period Returns

Mean Standard Deviation
S ut _
Index ReturrR; e 1 e2ut(eo?t _ 1)
A t _
LETF Returnk{ e*Ht —1 Jerut(exzazt B 1)

METF ReturnR} x(ett —1) Ix| /ezm(ea% ~1)

Because the levels of the LEHE and indexS; share the same sample path, the quantity

Z should be identical fa$; andA; in Equation (6). Cancelling the varialflein the equation

results the relationship betwegpandsS, previously given in Section 1 (Avellaneda & Zhang,

2010) and (Cheng & Madhaven, 2009)

A Se\* x — x? 7
—t=1+R§‘=(—t) exp( 5 azt) @

x — x?
=1+ Rts)xexp< 5 azt)
We prove this equation using It6’'s Lemma. We deéimeew proces§; which is the ratio

A S\ ¥
of—tand(—t) .
Ao So

G (A, St t) = ToNT
ot
So

Applying Ité’s Lemma on the proce€s = (4., S, t):

" The holding period returns are definedris= j—f —1,Rf = % —1andRM = % — 1. According to the
0 0 0

payoff property of the METF, its holding periodust satisfieRY = xR;?.



G, aG, 0G, 102G,
dG, = | == uS; + —— + ——xpA; + -

N 926G, (8)
as, at = 94, 2 0S2 2 0AZ

(XUAt)Z

+ azGt( S)(g4,) dt+(aGt S +aGt A)dZ
95,4, ot as, 7ot T ga, X0t ) A4t
1 A (S * 1
= E(x - xz)A—O(S—O) o%dt = E(x —x2)G.o?%dt

Note that theiZ; term is canceled in the calculations, thus thehstsitc partial

differential equation becomes a static partialedéhtial equation, which has a solution
x — x?
Gt = eXp( 2 O-2t> GO

This completes the proof of Equation (7).

Combining Equations (4) and (7), the relationshepAeend, andM; follows

A, M¢/My+x —1\* x — x? 9)
L_q4paA= (27 & 2¢
A, + < p exp > o

_(RY +x 8 x —x?2 2,
== exp| ——0

The tracking error between LETF and METF is a pssa#efined as

Tracking Err = M, — A; = So(RM — R{) (10)

S s x—x? 2
= So| xRy — (1 + Ry )*exp o‘t]+1

2

At given timet, the expected tracking error is
E[Tracking Err] = Sy(xett — et —x + 1)
This quantity is small when timeis small, while decreasing to negative infinitytaacreases.

2.2  Model Implications

There are several important implications about LE&frns in general and for shorter holding
period in particular to discuss before developihg discrete-time model.

2.2.1 Long-Term Returns



First, from Equations (4) and (7), the levdis andM, are mapped in a one-to-one relationship
to the underlying indexs,.> That is, the values of the LETF and the METF atetindepend
on the value of the index atS;, but not on the path over time #0This mapping holds in a

continuous time framework but not in a discreteetifmmework.

In Figure 1 we plot a comparison of a one yearrrefor an LETF R{) and an METF
(RY) compared to the return of the underlying indRX)( We give two examples: leverage
x = 3 (in Panel (a)) anag = —3 (in Panel (b)). In the same figure, we also plottiee second
axis the probability density function for the unlgiarg index ®?), which follows a log-normal

distribution.

Figure 1: The plot of holding period returns of LETF R{ and METF R} versusR?
assumingu = 10%, o = 30%, t = 1 year and leveragex = 3. Since the index holding

. S o .
period return 1 + R} = i follows a log-normal distribution, we also plot the probability
density function of R as a reference (right axis)
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(a) Leveragex = 3
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Figure 2: For the Leveragex = 3 case, in addition to Figure 1 (a), the tracking eor

RM—R% is plotted.
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First, note that in Panel (a) for index returnsaeen-20.6% and 46.2% the return an
METF dominates that of the LETF. The superimpgsexbability density highlightshe fact
that the majority of the probability likelihood is the range over which the METF
dominates the LETHnaking a long term investment in an LETF substdptaorse than an
METF. This is clear from Equatiory) for long holding periods (in this example a yean
LETF will perform worse than a fixed-initial-levegad investment. Moreover, if the underlying
index had a small positive return the LETF (wittspioe leverage) can under-perform not only
the METF but also the underlying index, due todbst associated with the daily rebalancing of
the leverage. Similar behavior holds with the niegaleveraged LETFThe METF will suffer
100% losses after an accumulated index loss of -88% positive 3x leverage (and 33% for
a negative 3x leverage). In contrast, an LETF igendully wiped out as it rebalances its

leverage daily and will converge to a value of zeub will never reach it.
2
Second, the termxp (% azt) in Equation (7) is always less than one, regasdtes

the leverage size (which is enumerated in thg¢-s&t—2,—1,2,3}). This implies that whes;
equalsS,, or when the holding period return of the inded #me margin account are both zero
(R = RM = 0), the holding period return of the LETF is alwaygative and underperforms
the index and METF. This implication is reflectedRigure 2 which directly plots the tracking
error of these two accoun®’ — R/ versus the realized holding period ret&h The tracking
error line crosses the x-axis at the same poigiardiess of the leverage size.

On the other hand, when the holding period retufrRdis significantly positive

(increasing to infinity) or negative (decreasing100%), the LETF returns exceed the return
a2
of the index, see Figure 1. Asncreases, the teraxp (%azt) decreases to zero, which

implies thatl + R# becomes significantly less thah+ R7)* but as Figure 1 illustrates, this

does not imply it is worse than the index value R;.

2.2.2 Short-Term Returns

Using a Taylor expansion of the right hand sideegtiation (7), we can see that whteis
small, the return curves of LETF and METF interseciwo points, which are approximated by

R;~ + o/t. Since these techniques are used extensivelgtén sections of the paper, we

restate the derivation here.

10



x — x?
RA=(1+R; xexp( 5 02t>—1

( s, X0 = DERD? ) [ ees () \
=(1+xRf+ + e -k1+ ot + +---)—1
2! 2 2!

_ops XD e 2 S33 2
= xR¢ + ———((RD)" —0”t) + O((R¢)*) + 0(t7)

The second line of this result is derived from al®a expansion of two functions

f(x) = (1 +a)* andf(x) = exp(x).” The omitted terms in the series are in the owfer

0((RY)?) + 0(t?). WhenR? andx_z—xzazt are sufficiently small (or when is sufficiently

small), the following result holds

x(x—1)
2

Recall that the holding period return of the MEBRdws RY = xR} . The tracking error
between the METF and LETF returns (from Equatid))is further simplified as

x(x—1
Tracking Err = R¥ — R\~ — %((Rf)z —0?t)

11
RA~xXR} + (11)

((RP)? — %t

This expression implies that the LETF outperforims METF wherR; > g/t or R < —ao+/t.
When holding both LETF and METF for a short time,,t less than a week or a month, the
result (11) holds with a high degree of accuraciyhe locations of the intersection points

(+0+t) are independent of the leverage size

In addition, since‘sg£ = 1 + R follows the lognormal distribution
0

S¢~LogNormal ((u —a?/2)t, a\/f)
we calculate the probability that the METF outperie the LETF as
Prob(Rf < RM)
~ Prob(—ovt < Rf < ovt)
~ Prob(—ovt < log(1 + Rf) < av/t)

® The Taylor Series expansion results gfe) = (1 + a)* = 1 + xa + x(x — 1)a?/2 + - andf(x) =

exp(x) = 1+x +x%/2! + x3/31 + -

11



= Prob(—avt < (Z + (u — 02 /2)t)ot < av/t)

=Prob(-1—(u—0c2/2)t<Z<1—(u—0c?/2)t)

~Prob(-1<Z<1)

= 68.27%
whereZ is a standard normal variable. The second linghef approximation re-applies the
Taylor expansion of the functiop =log(1+ x) = Yo, (—1)"*? % =x— x2_2 + - . Since
(1 + R?) follows a lognormal distributiodpg(1 + R?) follows a normal distribution
N((u—az/Z)t,a\/E) . When t is sufficiently small, the terml— (u—oc2/2)t is
approximately 1.

The probability that the METF value exceeds the EBmlue is very high whenis
small. For example, using the parameter assumptiofsgure 1 (au = 10%, ¢ = 30%, and
leveragex = 3, but settingt = 0.01, the tracking error equals zero Rt = 3.12% and
R} = —2.88% , which are close totovt= +3.00%. The probability that the LETF
underperforms the METF %8.27%. We also observe that this probability value istreely
independent of the values pfando. If x = —3 as in the Figure 1 (b) case, the two intersection
points areR; = 2.94% and Ry = —3.06% . This implies that the result is also quite
independent of the amount of leverage.

For long holding periods, the probability that tM&TF value exceeds the LETF value
loses some accuracy but it is still a good appraxiom. For example, using the above
parameters but changing the time= 1, the tracking error curve intersects zer®at= 46.2%
and Ry = —20.6% which shift significantly from the reference valwé +o+vt = +30% .

Therefore, based on our calculations, the value®METF exceeds the value of the LETF with
a true probability 069.01%.

3 Discrete Time Analysis

We start with a simple example to illustrate théfedent tracking errors yielded by our
continuous time and discrete time models. The @kamonsists of two scenarios for simple
three-day investments. See Figure 3 for an iliistn. In Scenario 1, the daily returns of the

index are 10%, 0%, and -10%. The corresponding L&tk a leverage ratio of 3 has daily

12



returns of 30%, 0% and -30%. If the initial valoé$oth accounts awk, = S, = 100, then
the index has an ending value of 99 and the LETIS evith a value 91. The METF has an
ending value 97 so the tracking error is -6. ler&eio 2, the index returns are -5%, -5%, and
9.7% for three consecutive days, resulting in alfindex value of 99. Though we have the
same index value and METF return as in Scenaneelgbserve that the LETF now has an

ending level of 93.27 and the tracking error i§33.

Figure 3: A simple example of two realized scenar®

A=130 A=130

Scenario 1

Ao=Sc=100

A3=93.27

Scenario 2

Though the ending levels of the index are the smboth scenarios, the ending levels
of the LETF and the LETF's tracking erroffféir. This contradicts the continuous time model
result, which states that the lev&l is one-to-one function c; regardless of paths. We may
conclude that LETFs in discrete time are path ddpenand therefore should not be analyzed

with continuous time models.

3.1  Model
In the discrete time setting, we assume the disdigte periods arg), ty,t, ..., t,. The time

points are equally spaced with a step size=t; —t;_;,i = 1,...,n, whereAt typically

13



represents the portfolio rebalance frequency. Ifydeebalancing is assumed, we may set
At = % to represent the length of one day. Bmaple return of the index in each time step is

denoted as;, wherer; follows a normal distribution with annualized egped returnu and
expected volatility:

r; ~N(uAt, aVAt)
r; are also i.i.d. normal random variables.

The index levelS, at timet, is an accrual of daily return$, = Sy [[’L,(1 +1;).
Because LETFs rebalance their portfolios once etigrg incremen[ti,tiﬂ], the simple return
of the LETF isx times the simple return of the index:

riA = XT3 (12)
This discrete time equation corresponds to EqudB8pim the continuous time setting. The level
of the LETF at time, is therefored,, = 4, [T/2,(1 + ).

We first analyze the relationship betwegnands,,. Introducing a similar ratio as in the

. . A; A
continuous times; = S—; on day zerd;, = 5—2 On day one,
1 0

4

A 1+  1+an

ISR SR CETSE:
If we take the log on both sidész(G,) = log(G,) + log(1 + xr;) — x log(1 + r;) and use the

Gy

Taylor expansion result on functideg(1 + x), we have

x — x?
log(G,) = log(G,) + 5 T2+ -

The omitted terms are in the ordendf We use backward induction to calculétg, from G;

as

A 1+ 1

Giit = =G
t+ Sl‘x+1 ' (1 + ri+1)x

Thus, we may derive the general expression
2 i

X —X
log(6)~10g(Go) + = > 12
k=1

Simplifying the above equation and pluggiigands; back in, as of time,, we have

An (Sn)x X —xz = P (13)
7 5, exp 5 2, 7]

1

14



Equation (13) is the discrete time result basedsonple returns;. Compared to its
counterpart in the continuous time setting (Equmatit)), we note the difference is that the term
a%t in Equation (7) is replaced ¥ ,r?. However, the new term is not easy to solve
guantitatively. We need to further transform thggiagion tocontinuously compounded daily
returns.

Denoting #; as the continuously compounded daily return, thdex levelsS, =
Seexp(X™, 7). The translation from the continuously compound&TF return?? to 7; is
exp(f#) — 1 =7 = xr; = x(exp(f;) — 1). WhenAt is small, i.e., a day; is approximately
distributed as

7i~N ((u - 0% /2)At, 0VAt)
TheG; expressed in terms éf have similar derivations
log(G,) = log(G,y) + 7 — x#,
= log(Gy) + log(1 + r{') — x#4
=log(G,) + log(1 + xry) — x4
= log(Gy) + log(l + x(exp(y) — 1)) — xty

x — x?
= log(G,) + 5 FE+

The general expression in terms of continuouslypmmded returns is

n

A, (Sn)x x —xzz .
2, " 5, exp| —— 1 7
i=

This equation has the same form as the simplerretase (13) except usirfginstead of;.

(14)

Our analysis is similar to (Avellaneda & Zhang, @Pin the sense that they also perform a
discrete analysis. However, their focus on patheddpncy leads to afferent decomposition
(using realized variance instead of sum of meamggl) which does not allow for the same
analysis of the tracking error. Using variance & an optimal method for measuring the
tracking error as the decomposition adds an eemn bf magnitude0((At)?). In fact, many
papers on discrete variance modeling directly defiealized variance’ as the sum of returns
without adjusting the mean term. See for exampikin(& Carr, 2010).

The holding period return of the MEW%‘;’1 is still one-to-one mapped to holding period

returns of the indek’fn in the discrete time setting. The mean and stahdeviation of METFs

15



remain the same as in the continuous time settieg Table 1). Whem = 1, the tracking error
is zero because the returns of LETF and METF aweleq the leverage of the index returnxoy
times. For aterm dof,, the tracking error in the discrete time settsgalculated as

Tracking Err = So(RM — R2)

x X — x2
= So| xR;, — (1 +R;) exp > Zﬁz +1

i=1

X

n n 2 n
R ) X —Xx 2
=S xexp(Zn)— 1+exp(z i) exp( > Zri>+1

i=1 i=1 i=1

3.2  Model Implications

3.2.1 Short-Term Returns
The holding period return of LETR and METFR{! can be expressed in terms of sample

mean and sample variance, as can the tracking eRecall the definition of the sample mean

a(fy) = %Z?zlﬁ-, and sample varianeg(7;) = ﬁ P - ﬁ(}]?:lﬁ)z.
— x2 15
j—n ~ exp(xnﬁ(ﬂ-))exp (x Zx ((n —1)s%2(#) + nﬁ(faz)) (15)
0
_ x —x? _
= exp (xnu(ﬁ-) +——((n-Ds*F) + nu(ﬁ-)z)>

For METF, using the fact th&f, = Soexp(nﬁ(ﬁ-)) the return is solely a function of sample
mean

Mn _ 1+ x(exp(nu()) — 1)
M,

Let's review some properties about these two siedis sample mean and sample
variance (Casella & Berger, 2001). They are botidom variables, thus, is also a random

variable. Since?; are i.i.d. normally variables, the sample medi;) is also normally

distributed
B ~N ((ﬁ -0/t ﬁ)

The sample variance follows)g?_, distribution withn — 1 degrees of freedom

16



(- Ds*F) .,
o2/t n-1
In addition, sample mean and sample variancéndependent of each other.

In Equation (15), whent is small, the valuén — 1)s2(#;) dominatesi(#;)?, thus the
termni(#)? can be ignored. Moreover, the sample variait¢g) is known as an unbiased
and consistent estimator @fAt. For long holding periods, asincreases, the sample variance
converges tar?At:

n—1

(n = D)s?(F) + () ~(n — Ds2() — ——0t,~0t,
which makes (15) converge to the continuous tinsalt€7).

A key difference between the discrete and contisuone analyses is that for the LETF,
one-to-one mapping betwem;tl anthSn no longer holds, and nether does the mapping legtwe
an andRé‘fl. This indicates that there are extra trackingrsrin the discrete time setting.

We start our analysis of these errors by evaludiwgmean and standard deviation of
RE.

x (16)

.2
E[RE ]~ E [exp (xnﬁ(ﬁ-) + Zx ((n—1)s2() + nﬁ(ﬁ-)z)> - 1]

x — x? -
exp( > (n—1)s (rl-)>]—1

ox (_ tax(At(—4u? + 4p’x + 4uc? — 4uc?x — o* + o*x) — 4x0? — 8u + 402))
p 8(—x0?At + x%02At + 1)

V—xo2At + x2c2At + 1

x — x?

nﬁ(ﬁ-)2>] - E

=E [exp (xnﬁ(f’i) +

n-1
(11— (x—x%)0o%At)" 2 —1

2

n—1

O'Ztn> (1-(x—x>c?At)" 2 —1

X
~exp(xuty,)exp <—

In Line 2, the expectations are separable becadwesesample mean and sample variance are

independent. The last approximation is due to amgitsmall terms witlAt, which comes from

a2
the inclusion o%nﬁ(ﬁ-)z in Line 2. In a long term scenario, the additiotrakcking error

n-1

vanishes. A, increases to infinity, the quantityl — (x —x?)c2At)" 2z converges to
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x—

2
exp (Tx aztn). [E[Rg‘}l] becomeexp(xut,,) — 1 which matches the continuous time results in

Table 1.

The standard deviation B[;‘:l follows a similar derivation

¥ — x2 (17)
std(RA )~std | exp(xnu(7;)) - exp( (n— 1)sz(fi)>

2

2

X—X n—1

aztn> (exp(xzaztn)(l —2(x —x?)o?At) 2

= exp (x,utrl —

1
—(1—(x——xﬁdzAﬂ‘@’D)2

Again, ast, increases to infinitystd(Rg‘;l) converges to continuous time result

\/exp(Zx,utn)(exp(xzaztn) —1) asin Table 1.

We have shown that for short holding periods, therall mean and standard deviation
of the holding period returﬂfn is only slightly biased from the continuous tinese. Ag,
increases, the difference vanishes. For easervitien, we use the following notations in the

remainder of the text.

n—1

A=(1=(x—x2)g?At) " Z
B=(1-2(x- xz)azAt)_nT_1

and

C =exp (x_z—xz a? tn).

3.2.2 The Additional Tracking-Error
We quantify the magnitude of the additional tragkierror introduced in the discrete time

setting. When considering “additional” trackingaoe, we refer to the volatility conditioned
on givenS,. This is in contrast to the fact that in the canbus time setting, the conditional
volatility of an is zero conditioned on fixe®,. Provided thaF, = Soexp(nﬁ(ﬁ-)) and is
independent ta?(#),

E[RE, |Sn] (18)
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= E[R{, [R(F)]

X —

2
~E (= DG + nﬁ(ﬁ-)z)> -1

exp (xnﬁ(ﬁ-) + I_l(f”i)]

x — x?

= exp <xnﬁ(ﬁ) + Tll_l(ﬁ)2>

x — x? .
-E [exp< > (n— 1)52(7‘i)>

2
Tll_l(ﬁ)2> "A-1

l_i(f”i)] -1

X —X

= exp <xnﬁ(ﬁ) +
The conditional mean is slightly different from tham a continuous time setting

E[RE | S,] = exp(xnu(#)) — 1. We also calculate the conditional standard deiatis

std (Rg; |ﬁ(ﬁ-)) (19)
= exp (xnﬁ(f’i) +

x — x? _
- std <exp< 3 (n— 1)52(fi)> u(ﬁ))

. x=x% _ x — x? 5
= exp | xnu(#) + 5 n(#)? | - std | exp 5 g2AtX2_

x — x?

nﬁ(ﬁ)z)

2

X—x
= exp (xnﬁ(f’i) +— nﬁ(ﬁ-)z) VB — A2

The mean tracking error conditioned$n(or u(7;), or RY) is therefore

[E[Ré‘fl - R{H Sn] = xexp(xnu(#;)) — exp (xnﬁ(ﬁ-) + x_sznﬁ(fi)z) ‘A —x+1.
SinceR{t’1 is a constant conditioned &p, the conditional standard deviation of trackingpeis
the same as that & .

For a concrete example, we get 10%, 0 = 30% andt,, equal to 15 business days (3
weeks,t, = 15At). We plot in Figure 4 (a) and (b) the trackingpertogether with the deviation
bands. We us@él cont t0 specifically indicate the continuous time rés(i): R{L cont =

X A2
(%) exp (% azt) — 1. Figure 4 (b) is based on simulated values.
0

19



As we observe in the figure, the conditional meamas identical to the one in the
continuous time results. Even in a 3 week shoretperiod, LETFs yield returns with noise a
magnitude oft3% as a result of daily rebalancing. The magnitudeeases sharply with the
underlying volatility. For instance, when the urligi@g volatility changes t&0%, LETFs could

yield a+5% difference in 3 weeks. Considering scenarios wtranking error is small in

continuous time setting, i.e., Whﬁlﬁn is roughlyia\/a, of the tracking error magnitude, refer

to Table 2, which measures the weighted averagelittomal standard deviation with the
distribution of S,,.

Figure 4: Figure (a) plots thetracking error R} — R versus index returnR . The red

line is the tracking error in continuous time. Theblue line and the green lines are the mean
and 90% confidence interval in discrete time. Figre (b) illustrates the same story using
simulated results, in which we use 10,000 simulaticuns.
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(&) Numerical Results
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(b) Simulation Results

We analyze the deviation & andR{ ..., the deviation of discrete time versus

continuous time. Using Equation (16) and result§able 1, we calculate the expected value as
E[R¢, = Ré,,cont]

(20)
x —x? _n-1
~ exp(xut,) (exp (— aztn> (1-(x—x%)c24t) " 2 — 1)
A
= exp(xuty) (E - 1)
The standard deviation is calculated as
std(RA — R cont) (21)

o x — x? .
~std exp(xnu(n-)) (exp( > (n— 1)82(7'1')) — C>

= C~(exp(xty(o2x + 2p))B — 2exp(xty (a%x + 21) )AC

+ exp(xt, (02x + 21))C? — exp(2xut,, ) A2

1
+ 2exp(2xut,)AC — exp(2xput,)C?)?
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Both of the derived quantities are essentially>greetation of the conditional mean and
standard deviation, i.€E[RZ — R .on] = E [ E[R{ |Sn]] — E[R{ cone]- Table 2 lists the
overall standard deviation betweEg"Til andR;‘}1 cont- The values are sensitive to the underlying
index volatilities and the leverage size. Wheretage =3 the situations become more

pronounced. For a 90% confidence band surrourtiegnean, we may consider using two

times the standard deviation.

Table 2: Standard deviation of LETFs returnsRy., — Rf\ ... Thevolatilities are chosen

between 10% and 70%, which is the range of observealatilities from the 90 ProShares
LETFs.

Leverage
Volatility -3 -2 -1 2 3
10% 0.12% 0.06% 0.02% 0.02% 0.06%
20% 0.50% 0.25% 0.08% 0.09% 0.26%
30% 1.14% 0.57% 0.19% 0.19% 0.59%
40% 2.06% 1.01% 0.34% 0.35% 1.07%
50% 3.30% 1.60% 0.53% 0.55% 1.71%
60% 4.89% 2.33% 0.76% 0.80% 2.54%
70% 6.90% 3.22% 1.04% 1.10% 3.58%

Finally, we analyze the distribution of the tradkierrors. As we have pointed out
previously, METFs only depend on ending levelshaf tinderlying index, independent of the
sample path. The expected value of the trackiragerr

E[R, — RE,] (22)

X —

2
~ E |1+ x(exp(nu(f)) — 1) — exp (xnﬁ(ﬁ-) +222 (n— 1)52(7A'i)>]

2

A
= xexp(uty) — (x —1) — eXp(xutn)E
The standard deviation of the tracking error:

std(RM — R2) (23)

.2
~ std <xexp(nﬁ(ﬁ-)) —exp (xnﬁ(f‘i) +Z 2x (n— 1)52(7”‘L-)>>
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| =

exp(2xut, — (x — x?)o%t,) (exp(x?a?t,)B — A?) 2
+x2exp(2ﬂtn)(exp(02tn) - 1) -
2xA

1
- (exp (E ty(x + 1)(x0? + 2,u)> C —exp((x + 1)utn)>

Table 3: Standard deviation of total tracking error, still using the volatility range from
10% to 70%.

Leverage
Volatility -3 -2 -1 2 3
10% 0.54% 0.27% 0.09% 0.09% 0.28%
20% 2.09% 1.05% 0.35% 0.36% 1.09%
30% 4.68% 2.35% 0.79% 0.81% 2.45%
40% 8.34% 4.17% 1.39% 1.44% 4.41%
50% 13.10% 6.51% 2.17% 2.27% 6.99%
60% 19.01% 9.40% 3.13% 3.30% 10.26%
70% 26.14% 12.83% 4.26% 4.55% 14.30%

The overall tracking error gap is quite large. @amnng Table 2 and Table 3 entry by
entry, we observe that the tracking error due seréie time rebalancing is rougl§% of the

total tracking error.

4 Empirical Analysis

In this section, we use historical data to verifg patterns we derived in the previous section
and analyze the potential deviation between therelis time LETF's returnl(él) and its

corresponding continuous time retL(rRé1 ,Cont). The discrete time return represents the
realized total return of a LETF which performs gabrtfolio rebalances. As we have shown
previously, the continuous time rettmgtucom is governed by Equation (7), which requires
three inputs: realized underlying index total retueverage size, and expected volatility of the

underlying index.
We collect 90 LETFs issued by ProShares betweea 20, 2006 (the date of their first

LETF offering) and June 30, 2009. Investors hdidse funds on average for fairly short
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periods of time: 3®f the funds have average holding periods of teas 1 montt and 79 of
the funds have an average holding period of lems #ix months! The fund with the longest
average holding period is the ProShares Ultra SM&CI Mexico (SMK) with 520 days; the
fund with the shortest average holding period igSPares Ultra Pro S&P 500 fund with less
than 1 day.

In Table 4 we present tildingperiods (Start Date/End Date) during which theriaés
largest discrepancy in retur@aximum ofR? ... — R{. ) between the continuous and discrete
cases. The length of these holding periods igifed¢ethe corresponding average turnover days of
each fund. We do not report such time period88ProShares funds for which the average
turnover is less than 1 month. The funds are dont@n increasing order by average turnover
days.

In practice, LETFs rebalance their portfolio dalyd generate returns modeled in the

discrete time settingR#n reflects the actual total return for the holdiregipd. For continuous
time returns, we use Equation (7) to commﬁgcont. The expected volatility in the formula is

unobservable and thus has to be estimated. Welatddhe expected volatility as the trailing
one year return volatilities before the start ddteach period. As noted in the previous sections,

the continuous time retumépcont should represent the LETF returns when the paotfs|

rebalanced continuously.

9 The average turnover is the average ratio of dedlying volume divided by daily shares outstanding

1 See (Guedj, Li, & McCann, 2010) of an analysishef distribution of holding periods.
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Table 4: Of all the 90 ProShares LETFs we analyz&9 funds have average turnover less
than 23 business days (a month). We calculate thelding period (number of turnover
days) in which LETFs incur the largest return discrepancy with the continuous time
setting. The discrete time return is the fund’s ralized holding period return. The
continuous time return is based on the realized reirn of the underlying index, leverage,
and expected volatility (Equation (7)). The expectevolatility (over a trailing year) and
realized volatility (during the time period) are also reported.

Fund ;g\éer Start Date  End Date R‘;‘n_c,,m R‘;‘n \E/éfftﬁit; d sgg tl|zl|?;/j Turnover
DUG -2 10/8/2008 10/10/2008 50.56% 37.78% 22.79% e 2
QID -2 9/25/2008  9/29/2008 27.16% 20.16% 14.56% i [370) 2
QLD 2 4/12/2007  4/16/2007 5.87% 2.11% 13.93% 28.37% 2
TWM -2 10/10/2008 10/15/2008 8.17% -1.00% 17.04% 0.85% 3
GLL -2 3/13/2009  3/18/2009 7.59% -5.15% 30.02% 3605 3
UYG 2 9/15/2008  9/19/2008 41.38% 24.00% 10.69% 189%. 4
UWM 12/1/2008  12/5/2008 22.17% 18.05% 17.04% &3 4
SDS -2 10/8/2008 10/14/2008 -2.65% -9.77% 10.40% 7.16%% 4
DXD -2 10/3/2008 10/10/2008 49.18% 39.05% 10.13% .868% 5
SCO -2 11/28/2008  12/5/2008 75.58% 46.52% 46.81%  .3988 5
Uco 2 12/24/2008 1/2/2009 71.75% 46.49% 46.81% 3.8 5
SSO 9/29/2008  10/6/2008 -8.77% -13.16% 10.18% 89%50. 5
DDM 2 10/10/2008 10/20/2008 20.17% 11.74% 10.03% 3.2@% 6
SRS -2 11/20/2008  12/1/2008 -11.76% -36.40% 14.28%199.84% 6
AGQ 2 5/4/2009  5/13/2009 34.49% 15.10% 50.39% 2%.89 7
MZZ -2 10/3/2008 10/15/2008 52.12% 38.05% 13.44% 3% 8
XPP 7/15/2009  7/28/2009 27.56% 20.06% 60.94% 24.8 9
EET 8/19/2009 9/1/2009 4.04% -2.77% 43.04% 18.88% 9
MVV 2 11/20/2008  12/8/2008 53.56% 48.70% 12.99% 78% 11
SKF -2 9/19/2008  10/7/2008 93.86% 40.51% 10.69% .38 12
DOG -1 9/23/2008 10/10/2008 28.37% 23.36% 10.03% .64 13
UGL 2 1/29/2009  2/24/2009 20.95% 10.93% 30.02% .8 17
TBT -2 10/13/2008  11/5/2008 1.03% -4.45% 12.39% 24% 17
UsD 11/20/2008 12/16/2008 65.09% 50.22% 22.44% 6178 17
DIG 2 10/10/2008  11/4/2008 52.90% 36.11% 22.79% v ) 17
SDD -2 10/1/2008 10/27/2008 121.24% 90.67% 1557% 5.02% 18
EFU -2 10/2/2008 10/28/2008 88.85% 19.58% 13.21% 4508 18
SSG -2 10/31/2008  12/1/2008 73.37% 48.16% 22.44% 1382 20
SKK -2 9/26/2008 10/27/2008 150.56% 114.49% 17.91% 78.77% 21
SJH -2 9/26/2008 10/27/2008 140.56% 97.18% 15.97% 9.61%6 21
SH -1 9/26/2008 10/28/2008 28.86% 21.16% 10.18% 6738. 22
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URE 2 11/20/2008 12/23/2008 107.25% 60.98% 14.28% 53.36% 22
SMN -2 9/25/2008 10/27/2008 233.22% 144.79% 18.46% 106.78% 22
PSQ -1 9/19/2008 10/22/2008 40.81% 30.89% 13.93%  .6380 23

There are several possible explanations for th@efsncies noted in Table 4. First, is
the difference between discrete and continuoudarbimg in short horizons. This is the
argument we develop in the model in the previogti@e We demonstrated thla{:l is crucially
dependent on the realized volatility during thednad period. This volatility could be very
different from the expected long run volatility.s Ahe table shows, in most situations, the
realized volatility in the holding period becomasge, thus deteriorating the performance of
LETFs.

Second, LETFs imperfectly track their referenceekab. The results in Table 4 show
that occasionally funds incur large tracking ercmmpared to theunderlying index; for
example, FXP’s return on Oct 15, 2008 was -17.1%ijlevimplied from the index, the
continuous rebalanced return should be 28.9%.r tHése funds with short holding periods 3
days) in the table, the funds with large discrepaimcR versustn is primarily due to the
imperfect tracking. In general, LETFs can maintistable leverage ratio fluctuating around the
target leverage ratio.

Third, index volatility is time-varying and we ha@ssumed constant volatility in the
model. During a short time interval, the realizedlatility, which crucially affects the
performance of LETF returns, would be well-biasemhT the average volatility. Incorporation
of moresophisticated stochastic volatility modelshandle this issue could be an informative
direction for future research.

These empirical results highlight the two main ftesof our model. First, continuous
and discrete time models provide significantly elifnt assessments of LETFs for short holding
periods. LETFs rebalance their position only oncgag, and the continuousodel implicitly
assumes there is a continuous rebalancing. On wlhagse there artarge returns there is a
non-trivial difference between thesassumptions. Second, this example highlights the
potentially largedifference between theoretical and realized volatilgg its impact on the

expectation versus actual deviation between theFL.&Td a fixed-leveraged investment.
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5 Conclusion

Buy and hold investors in LETFs wish to obtain laged holding period returns of the
underlying index, which we refer to as a fixed-alHieverage investment strategy. However,
LETFs rebalance their portfolios daily, thus obiagn only discretized leveraged exposure.
This creates a potentially significant discrepannyekpected and realized returns, even
suffering losses in LETFs while the underlying irdgins.

We have presented quantitative models of trackiry® between LETFs and similar fixed-
initial-leverage investment strategies. In suppleim® well analyzed long term tracking
deviations, we focus on addressing short term ingakncertainties. We separated the analysis in
continuous time and discrete time settings. Contpbéoethe continuous time settings, discrete
time models more accurately portray real life daépalancing. Although the two have slight
differences, especially for short holding periods, e¢hare additional tracking errors in the
discrete time rebalancing. The additional errorodtices a 0.2% to 5%ftkrence in holding
period returns over 3 weeks. We also qualitativetyalyzed the additional error or uncertainties
in discrete time models showing that they accoan25% of the total tracking error.

Issuers recommend LETFs for short holding peridddeed, almost half of the LETFs
surveyed in the paper have average holding penddess than a month. LETFs are assumed
to be able to track a margin account in continubose models, but in reality, the discrete
nature of rebalancing introduces tracking errorschwvtare potentially substantial even during
short holding periods. This suggests that the agdtiholding time for LETFs may be longer

than current recommendations would indicate.
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